

## Series 1605

The purpose of producing a rodless cylinder is to provide a space saving option over conventional cylinders. On a traditional rod type cylinder, the total space occupied with rod out is more than double the length of the cylinder, while with rodless cylinder it is little more than its stroke. Profiled tube allows mounting of sensors 1500...RS...HS... and 1580...MRS...MHS... on the two sides of carriage, by means of suitable brackets. Standard accessories include foot mounting brackets for installation on cylinder and caps, intermediate mounting brackets to give support to long stroke cylinders under load (over one metre), an oscillating coupling device for installation between the mounting plate and the load and on request, a very precise external movement device.

### Construction characteristics

|                     |                                                 |
|---------------------|-------------------------------------------------|
| Other seals         | oil resistant NBR rubber                        |
| Bands               | tempered stainless steel                        |
| Cushion bushings    | aluminium                                       |
| Barrel              | anodized aluminium                              |
| Mounting place      | anodized aluminium                              |
| Piston seals        | special 80 shore nitril mixture, wear resistant |
| Plain bearing guide | acetal resin                                    |
| Piston              | acetal resin                                    |
| End caps            | anodized aluminium                              |

### Operational characteristics

|                     |                                     |
|---------------------|-------------------------------------|
| Fluid               | filtered and lubricated air         |
| Pressure            | 0.5 ... 8 bar                       |
| Working temperature | -5 °C ... +70 °C                    |
| Max. speed          | 1.5 m/s (normal working conditions) |
| Bores               | Ø25 - Ø32 - Ø40 - Ø50 - Ø63         |
| Max. strokes        | 6 meters                            |

Please follow the suggestions below to ensure a long life for these cylinders:

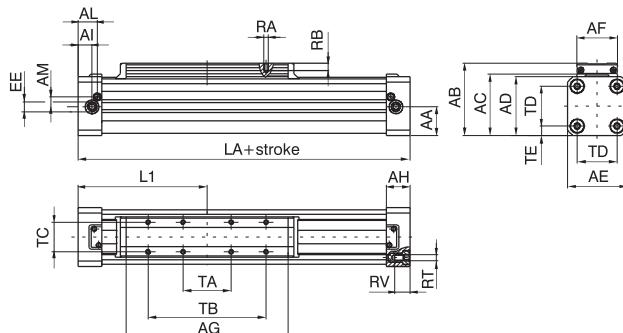
- use clean and lubricated air.
- Please adequately evaluate the load involved and its direction, especially in respect to the moving carriage (also see tables for loads and admitted moments).
- avoid high speeds together with long strokes and heavy loads: this would produce kinetic energy which the cylinder cannot absorb, especially if used as a limit stop (in this case use mechanical stop device).
- evaluate the environmental characteristics of cylinder used (high temperature, hard atmosphere, dust, humidity etc.).

**Please note: air must be dried for applications with lower temperature.**

Use hydraulic oils H class (ISO VG32) for correct continued lubrication.

For applications where a low smooth uniform operations speed is required, you must specify this on your purchase order so that we can use the proper special grease.

### Use and maintenance


This type of cylinder, due to its characteristics, has to be used within certain criteria. Correct use will give long and troublefree operation. Filtered and lubricated compressed air reduce seal wear. Verify that the load will not produce unforeseen stresses. Never combine high speed with heavy load. Always support the long stroke cylinder with intermediate brackets and never exceed the specified working conditions. If maintenance is required, follow the instructions supplied with the repair kit.

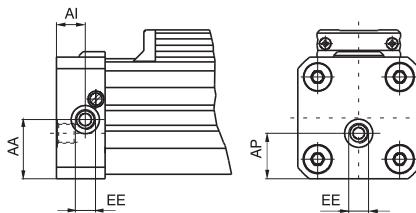


► **Basic version**

**Coding:** 1605.Ø.stroke.01.M

(Max. stroke 6 m)

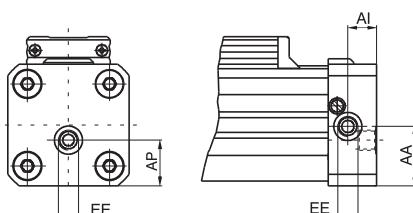



**Left head**

**Coding:** 1605.Ø.stroke.02.M

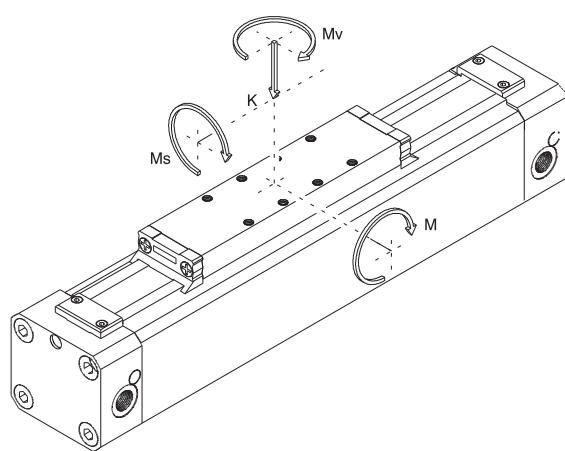
(Max. stroke 6 m)

Possibility of a single feed cylinder head


3



**Right head**


**Coding:** 1605.Ø.stroke.03.M

(Max. stroke 6 m)



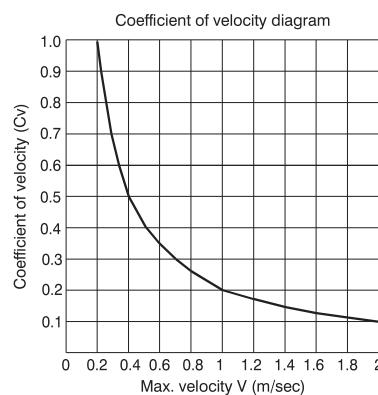
| Bore                      | 25                       | 32         | 40          | 50          | 63          |
|---------------------------|--------------------------|------------|-------------|-------------|-------------|
| AA                        | 19,5                     | 25,5       | 31          | 39          | 46,5        |
| AB                        | 56                       | 70         | 80          | 98          | 113,5       |
| AC                        | 48,5                     | 60         | 70          | 85          | 100         |
| AD                        | 44                       | 55         | 65          | 80          | 95          |
| AE                        | 40                       | 55         | 65          | 80          | 95          |
| AF                        | 30                       | 40         | 40          | 55          | 55          |
| AG                        | 117                      | 146        | 186         | 220         | 255         |
| AH                        | 23                       | 27         | 30          | 32          | 36          |
| AI                        | 12,5                     | 14,5       | 17,5        | 19          | 23          |
| AL                        | 19                       | 22,5       | 24,5        | 26          | 30          |
| AM                        | 7,5                      | 10,5       | 11,5        | 13,5        | 16          |
| AP                        | 13                       | 15,2       | 23          | 30          | 35,5        |
| EE                        | G1/8"                    | G1/4"      | G1/4"       | G1/4"       | G3/8"       |
| L1                        | 100                      | 125        | 150         | 175         | 215         |
| LA                        | 200                      | 250        | 300         | 350         | 430         |
| RA                        | M4                       | M5         | M5          | M6          | M6          |
| RB                        | 7,5                      | 9,5        | 9,5         | 11,5        | 11,5        |
| RT                        | M5                       | M6         | M6          | M8          | M8          |
| RV                        | 13,5                     | 16,5       | 16,5        | 20,5        | 20,5        |
| TA                        | 30                       | 40         | 40          | 65          | 65          |
| TB                        | 80                       | 110        | 110         | 160         | 160         |
| TC                        | 23                       | 30         | 30          | 40          | 40          |
| TD                        | 27                       | 36         | 47          | 54          | 68          |
| TE                        | 6,5                      | 9,5        | 9           | 13          | 13,5        |
| Weight (g)                | Stroke 0<br>every 100 mm | 900<br>225 | 1650<br>340 | 2650<br>490 | 4330<br>725 |
| Stroke tolerance: + 2 mm. |                          |            |             |             |             |

## Basic version cylinder



## Recommended loads and moments in static conditions

| Cylinder bore | Decelerating stroke (mm) | Max. recommended load K (N) | Max. recommended bending moment M (Nm) | Max. recommended cross moment Ms (Nm) | Max. recommended twisting moment Mv (Nm) |
|---------------|--------------------------|-----------------------------|----------------------------------------|---------------------------------------|------------------------------------------|
| 25            | 20                       | 300                         | 15                                     | 0,8                                   | 3                                        |
| 32            | 25                       | 450                         | 30                                     | 2,5                                   | 5                                        |
| 40            | 31                       | 750                         | 60                                     | 4,5                                   | 8                                        |
| 50            | 38                       | 1200                        | 115                                    | 7,5                                   | 15                                       |
| 63            | 49                       | 1600                        | 150                                    | 8,5                                   | 24                                       |


Attention: use guided carriage for heavier loads or precise linear movements (MG or MH versions).

All reported data are referred to carriage plane and indicates MAX - values in statical conditions. These values should not be exceeded either in dynamic conditions (best speed <1m/sec).

Should the cylinder be utilised at its maximum performances, ensure the proper additional absorbers are used.

## Calculation of permissible load (Kd) in dynamic conditions

$$Kd = K \cdot Cv$$

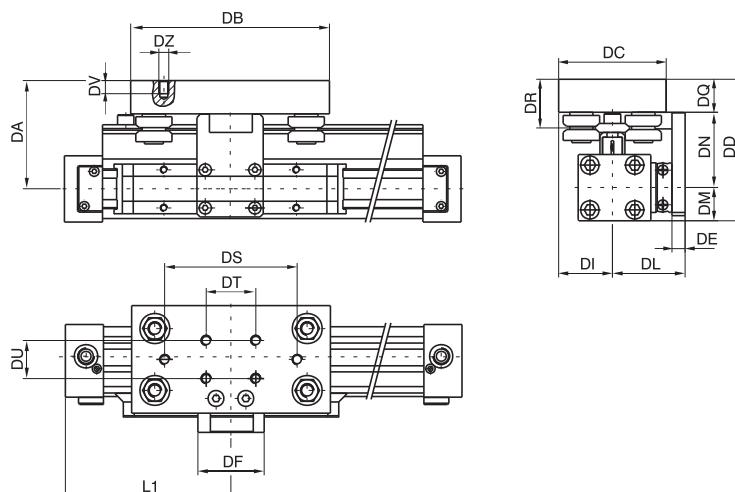


## Loads under combined stressing conditions

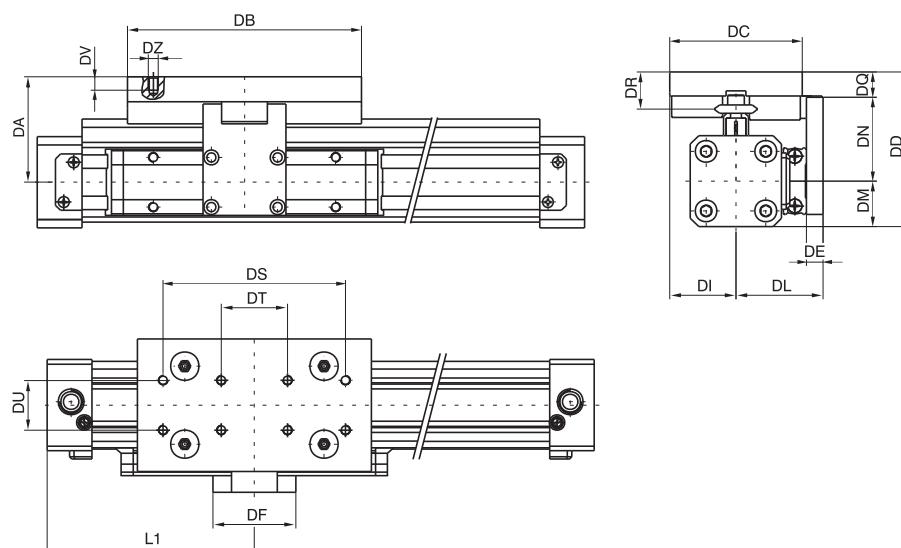
It is important to take into consideration the following formula when there are a combination of forces with torque:

$$\left[ \left( 2 \times \frac{Ms}{Ms \max} \right) + \left( 1.5 \times \frac{Mv}{Mv \max} \right) + \frac{M}{M \max} + \frac{K}{K \max} \right] \times \frac{100}{Cv} \leq 100$$




► **Cylinder with linear control unit**

Coding: 1605.Ø.stroke.01.MG


(Max. stroke 3 m)



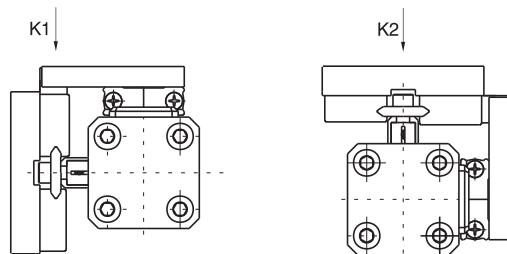
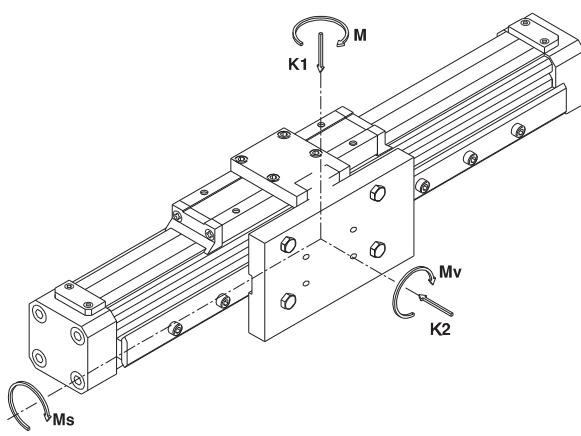
Cylinders Ø25



Cylinders Ø32, Ø40, Ø50

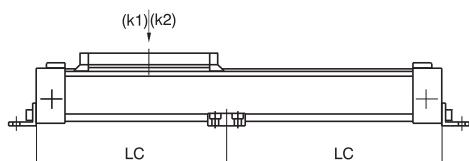
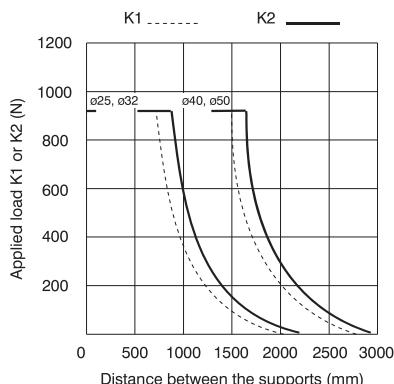


| Bore | DA   | DB  | DC | DD   | DE | DF | DI   | DL   | DM   | DN   | DQ   | DR   | DS  | DT | DU | DV | DZ | L1  | Weight (g) | every 100 mm |
|------|------|-----|----|------|----|----|------|------|------|------|------|------|-----|----|----|----|----|-----|------------|--------------|
| 25   | 65   | 120 | 65 | 85   | 8  | 40 | 32,5 | 44   | 20   | 45,5 | 19,5 | 29   | 80  | 30 | 23 | 8  | M6 | 100 | 850        | 90 g         |
| 32   | 63   | 141 | 80 | 90,5 | 10 | 50 | 40   | 52,5 | 27,5 | 48,5 | 14,5 | 21,5 | 110 | 40 | 30 | 8  | M5 | 125 |            |              |
| 40   | 68,5 | 141 | 80 | 101  | 10 | 50 | 40   | 57,5 | 32,5 | 54   | 14,5 | 21,5 | 110 | 40 | 30 | 8  | M5 | 150 |            |              |
| 50   | 76   | 141 | 80 | 116  | 12 | 80 | 40   | 70   | 40   | 61,5 | 14,5 | 21,5 | 110 | 40 | 30 | 8  | M5 | 175 |            |              |



For cylinders weight refer to base version

**Construction and working characteristics**

|                    |                                                  |
|--------------------|--------------------------------------------------|
| Rod                | carbon steel with hardness higher than 55-60 HRC |
| Bearing with shaft | shielded bearing with shaped ring                |
| Carriage plate     | anodised aluminium                               |
| End cap            | acetal resin                                     |

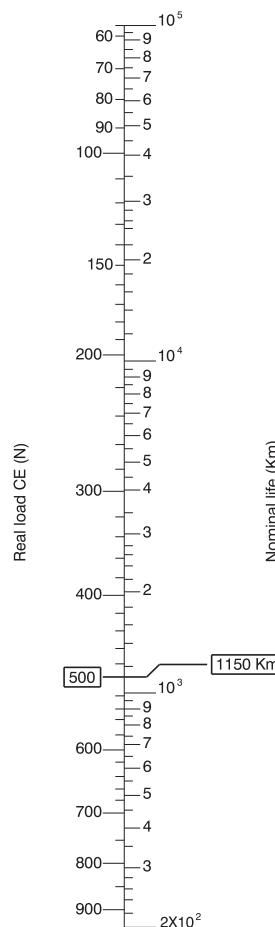


Cylinder with linear control unit Ø25, Ø32, Ø40 and Ø50 mm

Max. suggested loads and moments



| K1 (N) | K2 (N) | M (Nm) | Ms (Nm) | Mv (Nm) |
|--------|--------|--------|---------|---------|
| 960    | 960    | 40     | 12      | 40      |

Max. load (K1 or K2) depending on the distance LC between the supports




Real load (CE) under combined stressing conditions

It is important to take into consideration the following formula when there are a combination of forces with torque:

$$CE = [K1 + K2 + (24 \times M) + (80 \times Ms) + (24 \times Mv)] \leq 960$$

Nomograph load / life



All data refers to a linear control unit properly lubricated with linear speed < of 1.5 m/s  
Example to compute the life

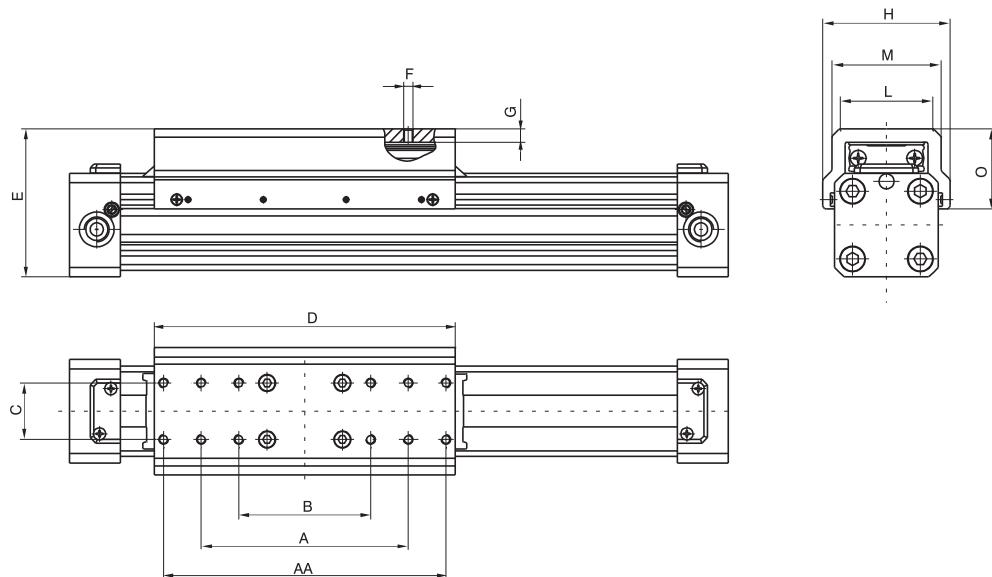
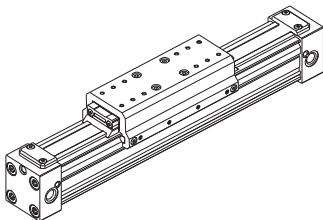
Compute the linear control unit life with a load of 100 N applied 50 mm off its axle.

$$Ms = 0,05 \times 100 = 5 \text{ Nm} \quad K1 = 100 \text{ N}$$

How to compute the real load using the formula:

$$CE = [K1 + K2 + (24 \times M) + (80 \times Ms) + (24 \times Mv)]$$

$$CE = [(100 + 0) + (24 \times 0) + (80 \times 5) + (24 \times 0)] = 500 \text{ N}$$



After having verified that the CE is lower than 960 N we realise that the life is 1150 Km from the nomograph.



### ► Cylinder with plain bearing guide

Coding: 1605.Ø.stroke.01.MH

(Max. stroke 6 m)



| Bore | AA  | A   | B   | C  | D   | E                   | F  | G   | H   | L  | M  | O    | Weight (g) |
|------|-----|-----|-----|----|-----|---------------------|----|-----|-----|----|----|------|------------|
| Ø25  | /   | 80  | 55  | 23 | 130 | 64 <sup>±1</sup>    | M4 | 6,5 | 57  | 36 | 42 | 32   | 235        |
| Ø32  | /   | 110 | 70  | 30 | 160 | 78,5 <sup>±1</sup>  | M5 | 7   | 68  | 50 | 58 | 42,5 | 445        |
| Ø40  | /   | 110 | 70  | 30 | 202 | 88,5 <sup>±1</sup>  | M5 | 7   | 77  | 52 | 60 | 45,5 | 595        |
| Ø50  | 210 | 160 | 110 | 40 | 235 | 114,5 <sup>±1</sup> | M6 | 14  | 100 | 71 | 83 | 61,5 | 1453       |
| Ø63  | 210 | 160 | 110 | 40 | 270 | 130 <sup>±1</sup>   | M6 | 14  | 116 | 76 | 90 | 65,5 | 1810       |

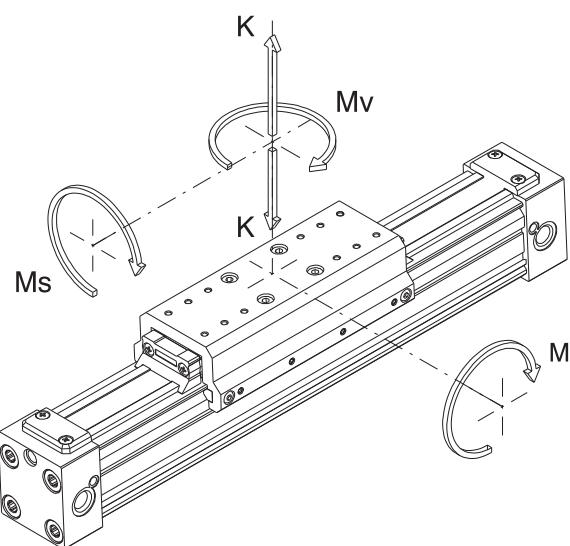
### ► Complete plain bearing guide

Coding: 1600.Ø.05F



### Construction and working characteristics

Plain bearing


reinforced carbon fibre nylon

Carriage plate

anodised aluminium

**Cylinder with plain bearing guide ø25, ø32, ø40, ø50 and ø63 mm**

Max. suggested loads and moments



**Recommended loads and moments in static conditions**

| Cylinder bore | Max. recommended load K (N) | Max. recommended bending moment M (Nm) | Max. recommended cross moment Ms (Nm) | Max. recommended twisting moment Mv (Nm) |
|---------------|-----------------------------|----------------------------------------|---------------------------------------|------------------------------------------|
| Ø25           | 300                         | 20                                     | 1                                     | 4                                        |
| Ø32           | 450                         | 35                                     | 3                                     | 6                                        |
| Ø40           | 750                         | 70                                     | 5                                     | 9                                        |
| Ø50           | 1200                        | 120                                    | 8                                     | 16                                       |
| Ø63           | 1600                        | 155                                    | 9                                     | 25                                       |